694 research outputs found

    Congestion Control using FEC for Conversational Multimedia Communication

    Full text link
    In this paper, we propose a new rate control algorithm for conversational multimedia flows. In our approach, along with Real-time Transport Protocol (RTP) media packets, we propose sending redundant packets to probe for available bandwidth. These redundant packets are Forward Error Correction (FEC) encoded RTP packets. A straightforward interpretation is that if no losses occur, the sender can increase the sending rate to include the FEC bit rate, and in the case of losses due to congestion the redundant packets help in recovering the lost packets. We also show that by varying the FEC bit rate, the sender is able to conservatively or aggressively probe for available bandwidth. We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network simulator and in the real-world and compare it to other congestion control algorithms

    Ambient networks: Bridging heterogeneous network domains

    Get PDF
    Providing end-to-end communication in heterogeneous internetworking environments is a challenge. Two fundamental problems are bridging between different internetworking technologies and hiding of network complexity and differences from both applications and application developers. This paper presents abstraction and naming mechanisms that address these challenges in the Ambient Networks project. Connectivity abstractions hide the differences of heterogeneous internetworking technologies and enable applications to operate across them. A common naming framework enables end-to-end communication across otherwise independent internetworks and supports advanced networking capabilities, such as indirection or delegation, through dynamic bindings between named entities

    Names, addresses and identities in ambient networks

    Get PDF
    Ambient Networks interconnect independent realms that may use different local network technologies and may belong to different administrative or legal entities. At the core of these advanced internetworking concepts is a flexible naming architecture based on dynamic indirections between names, addresses and identities. This paper gives an overview of the connectivity abstractions of Ambient Networks and then describes its naming architecture in detail, comparing and contrasting them to other related next-generation network architectures

    05142 Abstracts Collection -- Disruption Tolerant Networking

    Get PDF
    From 03.04.05 to 06.04.05, the Dagstuhl Seminar 05142 ``Disruption Tolerant Networking\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A high-order and mesh-free computational model for non-linear water waves

    Get PDF
    In this paper, we present the ongoing developments of a novel computational model for non-linear water waves that aims to provide a suitable framework for wave-structure inter- action. The proposed model is based on radial basis function-generated finite differences, which allow for arbitrary and moving boundaries without the use of ghost nodes. In order to take advantage of the mesh-free setting, we propose a node generation strategy, suitable for moving boundaries. Numerical properties of the proposed model are investigated and finally the model is benchmarked. The proposed model is expected to provide a suitable computational framework for wave-structure interaction problems, due to its geometric flexibility and high-order nature

    How to contribute research results to Internet standarization

    Get PDF
    The development of new technology is driven by scientific research. The Internet, with its roots in the ARPANET and NSFNet, is no exception. Many of the fundamental, long-term improvements to the architecture, security, end-to-end protocols and management of the Internet originate in the related academic research communities. Even shorter-term, more commercially driven extensions are oftentimes derived from academic research. When interoperability is required, the IETF standardizes such new technology. Timely and relevant standardization benefits from continuous input and review from the academic research community. For an individual researcher, it can however by quite puzzling how to begin to most effectively participate in the IETF and - arguably to a much lesser degree - in the IRTF. The interactions in the IETF are much different than those in academic conferences, and effective participation follows different rules. The goal of this document is to highlight such differences and provide a rough guideline that will hopefully enable researchers new to the IETF to become successful contributors more quicklyThis research was supported by Trilogy (http://www.trilogy-project.org), a research project (ICT-216372) partially funded by the European Community under its Seventh Framework Programme. European Community's Seventh Framework ProgramPublicad

    06441 Abstracts Collection -- Naming and Addressing for Next Generation Internetworks

    Get PDF
    From 29.10.06 to 01.11.06, the Dagstuhl Seminar 06441``Naming and Addressing for Next-Generation Internetworks\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore